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Abstract. Under the assumption that at high energies total absorption prevails so that the imaginary
part of the scattering amplitude dominates, we present a sum rule for all hadronic elastic differential cross-

sections. We find that the dimensionless quantity 1
2

∫
(dt)

√
1
π

dσ
dt

→ 1, at asymptotic energies. A comparison

with experimental data from ISR and Tevatron confirms a trend towards its saturation and some estimates
are presented for LHC. Its universality and further consequences for the nature of absorption in QCD based
models for elastic and total cross-sections are explored.

1 Introduction

Ab initio calculations of hadronic elastic amplitudes and
total cross-sections in QCD are presently difficult due to
our meager understanding of “soft” physics, that is, the
non-perturbative and confinement region of QCD. Hence,
the need to invoke general principles such as analyticity
and unitarity to obtain bounds and restrictions on these
amplitudes as pioneered by Froissart and Martin [1–3].
Analyticity and unitarity are expected to hold for finite-
ranged hadron dynamics, only massive hadrons being the
bound states of quarks and glue. The central result of
our work described below is that under rather mild as-
sumptions, a universal behavior for all hadrons is likely
to emerge at asymptotic energies. It is exhibited as a sum
rule which should become exact at infinite energy. The
physics behind the sum rule is that hadrons are not ele-
mentary particles and hence there exists a tight correla-
tion between the rate of growth with energy of the elastic
amplitude and its fall off with the momentum transfer.

This paper is organized as follows. In Sect. 2, we
briefly review the eikonal formalism. The eikonal formal-
ism serves a dual purpose: it not only incorporates the fact
that at high energies hadronic elastic amplitudes are con-
centrated at small scattering angles (i.e. the elastic ampli-
tudes show a fast decrease with momentum transfer) but
it in addition guarantees that the direct (s-)channel uni-
tarity bound is not superseded. In Sect. 3, a discussion of
generic models is made in order to provide a background
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and to motivate the central result. Section 4 deals with
some rigorous constraints which the elastic amplitudes
must obey in the eikonal picture. In Sect. 5 we present
the sum rule and its experimental substantiation. We also
discuss here how the assumptions made to obtain the sum
rule may be further relaxed. In the concluding section,
Sect. 6, we discuss the universality and extensions of the
sum rule and further consequences.

2 Eikonal formalism for the elastic amplitude

Consider the amplitude for an elastic process A(pa) +
B(pb) → A(pc) + B(pd). Let s = (pa + pb)2 be the square
of the CM energy; let t = (pa − pc)2 = −2k2(1 − cos θ)
be the momentum transfer and k its CM 3-momentum in
the s-channel. Let us normalize the amplitude so that the
differential and total cross-sections are given by1

dσ

dt
= π|F (s, t)|2; σtot(s) = 4πImF (s, t = 0). (2.1)

We may expand the scattering amplitude in terms of the
partial-wave phase shifts as follows:

F (k, θ) (2.2)

=
(

i
2k2

) ∑
l

(2l + 1)[1 − η(l, s)e2iδR(l,s)]Pl(cos θ),

1 Since our applications are for large s, we ignore hadronic
masses in the kinematics where ever possible. For example, 4k2

is approximated to s, the lower limit on t is extended to −∞,
etc.
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where δR(l, s) is the real part of the phase shift and the
inelasticity factor η is related to the imaginary part of the
phase shift δI via

η(l, s) = e−2δI(l,s) (0 ≤ η ≤ 1). (2.3)

For small angles, the momentum transfer is
√−t = q =

(kθ). For small angles and high k, the impact parameter
b is defined as bk = (l + 1/2). In this limit, the Legendre
functions Pl(cos θ) are approximated by the Bessel func-
tions

Pl(cos θ) → J0(bq), (2.4)

through which one arrives at the eikonal expansion

F (s, t) = i
∫ ∞

0
bdbJ0(b

√−t)F̃ (s, b) (2.5)

with the “b-wave” amplitudes

F̃ (s, b) = 1 − ηe2iδR . (2.6)

In the above and the following we shall (wherever not
explicitly needed) suppress the dependence of η and δR
on the variables s and b.

Using (2.1)–(2.6), the total, elastic and the inelastic
cross- sections are given by

σtot(s) = (4π)
∫ ∞

0
bdb[1 − η cos(2δR)]

= (4π)
∫ ∞

0
bdbFT(b, s). (2.7)

σel(s) = (2π)
∫ ∞

0
bdb[{1 − η cos(2δR)}2

+(η sin(2δR))2]

= (2π)
∫ ∞

0
bdbFe(b, s). (2.8)

σin(s) = (2π)
∫ ∞

0
bdb[1 − η2]. (2.9)

Equations (2.5) and (2.6) can be inverted to give the com-
plex “b-wave” amplitudes as

[(1 − η cos(2δR)) − iη sin(2δR)]

= −i
∫ ∞

0
qdqJ0(bq)F (s, t). (2.10)

Note that if one defines the average number of colli-
sions as

e−n/2 = η cos(2δR), (2.11)

then

σtot(s) = (4π)
∫ ∞

0
bdb[1 − e−n/2], (2.12)

and the elastic cross-section reads

σel(s) (2.13)

= (2π)
∫ ∞

0
bdb[(1 − e−n/2)2 + e−n tan2(2δR)].

The forward differential cross-section reads[
dσ

dt

]
t=0

=
σ2

T

16π
[1 + ρ2(s, 0)], (2.14a)

where the “ρ-parameter” denotes as usual the ratio be-
tween the real and the imaginary part of the forward am-
plitude

ρ(s, 0) = ReF (s, 0)/ImF (s, 0). (2.14b)

For the slope parameter B(s), we need to expand the
Bessel function for small t. We find

B(s) =
d
dt

[
ln

dσ

dt

]
t=0

(2.15)

=
2 [ReF (s, 0)ReF2(s, 0) + ImF (s, 0)ImF2(s, 0)]

|F (s, 0)|2 .

The second moment factors ReF2(s, 0) and ImF2(s, 0) are
given through the real and the imaginary parts of

F2(s, 0) (2.16)

=
i
4

∫
bdbb2[(1 − η cos(2δR)) − iη sin(2δR)].

Thus, the total slope B(s) is the sum of the slopes from
the real and the absorptive parts. The main contribution
is from the absorptive part which is given by

Babsorptive(s) (2.17)

=
(

1
2[1 + ρ2(s, 0)]

) ∫
bdbb2[1 − η cos 2δR]∫
bdb[1 − η cos 2δR]

,

augmented by a small contribution from the real part of
the amplitude

Breal(s) (2.18)

=
(

ρ(s, 0)
2[1 + ρ2(s, 0)]

) ∫
bdbb2η sin 2δR∫

bdb[1 − η cos 2δR]
.

Since ρ(s, 0) is indeed rather small at high energies, the
effective slope B0(s) is essentially due to the absorptive
amplitude alone (that is if the real part of the phase shifts
were neglected)

B0(s) =
2ImF2(s, 0)
ImF (s, 0)

= (1/2)〈b2〉. (2.19)

A first rough estimate [4] of B0(s) is obtained under the
assumption that[

dσ

dt

]
≈

[
dσ

dt

]
t=0

eB0(s)t. (2.20)

Integrating (2.20) and employing (2.14b), one finds that

B0(s) ≈
(

σtot(s)
16π

) (
σtot(s)
σel(s)

)
[1 + ρ2(s, 0)], (2.21)

which is fairly close to the experimental values at high
energies. Below we investigate B0(s) in generic models.
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3 Generic model dependent results

Let us for simplicity set the real part of the phase shift
δR ≈ 0, so that Fe = F 2

T as defined in (2.7) and (2.8).
Then dimensional analysis tells us that if at large s, there
is only one scale, i.e., if FT(b, s) = f(b/bmax(s)),

σtot(s) = [4πb2
max(s)]

∫ ∞

0
xdxf(x);

σel(s) = [2πb2
max(s)]

∫ ∞

0
xdxf2(x), (3.1)

so that their ratio

Rel(s) = σel(s)/σtot(s) =

∫ ∞
0 xdxf2(x)

2
∫ ∞
0 xdxf(x)

(3.2)

is independent of s. Also the slope parameter B0(s) would
scale as b2

max(s).
While the above would not be satisfactory from the

point of view of obtaining the observed experimental vari-
ations in s for the ratio in (3.2), it would be instructive to
evaluate it analytically in some simple models as limiting
cases of more realistic models.

(i) Gaussian distribution

Let

f(x) = fG
0 e−x2

(fG
0 ≤ 1), (3.3)

then

RGauss
el (s) = (1/4)fG

0 ≤ 1/4. (3.4)

(ii) Exponential or Boltzmann distribution

Let

f(x) = fB
0 e−x (fB

0 ≤ 1), (3.5)

then

RBoltzmann
el (s) = (1/8)fB

0 ≤ 1/8. (3.6)

(iii) Fermi distribution

Let

f(x) = fF
0

2
ex + 1

(fF
0 ≤ 1), (3.7)

then

RFermi
el (s) = fF

0 [1 − (ln 2)/D], (3.8)

where

D =
∫ ∞

0

xdx

ex + 1
=

∞∑
n=0

[(−)n/(n + 1)2] = π2/12. (3.9)

Thus,

RFermi
el (s) = fF

0

[
1 − 12 ln 2

π2

]
≈ 0.15723fF

0 ≤ 0.16.

(3.10)

(iv) Limiting “Froissart” distribution

To saturate the Froissart limit, one essentially need as-
sume that all partial waves are completely absorbed up to
an l ≤ lmax(s) and beyond that the partial-wave ampli-
tudes are zero. In impact parameter language, it translates
into (see (2.11))

n(b, s) → ∞ for b ≤ bmax(s) ≈ b0(ln s);
n(b, s) → 0 for b ≥ bmax(s), (3.11)

so that (through (2.2), (2.3) and (2.11))

[1 − e−n(b,s)/2] = 1 for b ≤ bmax(s);

[1 − e−n(b,s)/2] = 0 for b ≥ bmax(s). (3.12)

In such a model

RFroissart
el (s) = 1/2. (3.13)

The significance of the above four models becomes
clear when one compares the experimental data on Rel
at high energies with predictions from each of the above.
Experimentally [5] Rel(pp̄) rises from about 0.17 at

√
s =

62 GeV to about 0.25 at
√

s = 1.8 TeV. In this high en-
ergy region, the Fermi distribution gives too low a value,
whereas the limiting Froissart distribution gives too high
a value for the elastic to total cross-section ratio.

The moral to be drawn from the above analytic mod-
els is that the Fermi and Froissart distributions are not
adequate, whereas the Boltzmann distribution is closer to
reality for moderately large energies which should cross-
over to a Gaussian distribution at yet higher energies. This
points to the need for generic 2-component models for
n(b, s) [6–8,10,9] with a “soft” and a “hard” part. In the
total cross-section, the soft component asymptotes to a
constant as a function of energy, whereas the hard part
incorporates the rise with energy. It would appear that
the dominant component at medium energies (the “soft”
part) should have Boltzmann (or thermal) fall off for large
b, whereas the component dominant at truely large ener-
gies (the “jet” part) should have a Gaussian fall off in b.
This is confirmed by detailed analyses [11,12].

A few words about f0, that is, the value of n(b, s) at b =
0. In the model of [7,11,12] for example, f0 is extremely
close to 1 for all large s. This value is of direct interest for
our sum rule described in Sect. 5.

4 Analyticity requirements
on the impact parameter distribution

The requirements of analyticity impose restrictions on the
large b-behavior of the function n(b, s). Let us briefly ex-
amine them through the expressions given in Sect. 2.

The finite range of hadronic interactions implies that
the partial-wave expansion converges beyond the physical
region, i.e., throughout the Lehmann ellipse. This requires
that Fel(s, t) be analytic in t up to t = 4µ2, where µ
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is the pion mass. For positive t, we continue the above
expression for

√−t = iW , with W real and positive. In
this “unphysical” region, we have

F (s, W 2) = i
∫

bdbI0(bW )F̃ (s, b). (4.1)

For large b, I0(bW ) ∼ ebW√
2πbW

, so that for the integral to
converge, one needs

|F̃ (s, b)| < e−bW0 with W0 
 2µ, (4.2)

which implies that

|1 − e−n(b,s)/2| < e−bW0/2. (4.3)

Thus, analyticity dictates that n(b, s) must be bounded at
least by an exponential.

Stronger (but model dependent) constraints arise pro-
vided one imposes that the elastic differential cross-section
exhibits a “diffraction peak”. That is, as in Sect. 2, let

F (s, t) 
 f(s)eb̂(s)t, (4.4)

where b̂(s) is the so-called width of the diffraction peak,
which has an observed (approximately logarithmic in) s
dependence. Then,

F̃ (s, b) 
 if(s)
4πs

∫
dq2J0(bq)e−b̂(s)q2

=
−if(s)

2πs

[
1

2b̂(s)

]
e− b2

4b̂(s) , (4.5)

which requires a Gaussian fall off of the amplitude in
the impact parameter b, with its scale determined by the
width of the diffraction peak. In the Regge pole descrip-
tion,

b̂(s) ∼ α′ ln(s/s0) f(s) ∼ iβ(s/s0)1+ε, (4.6)

and

F̃ (s, b) 
 β(s/s0)ε

4π(α′s0) ln(s/s0)
e− b2

4α′ ln(s/s0) . (4.7)

Classic mini-jet models [13,14] were constructed to de-
scribe the “hard” part of the cross-section as arising from
the scattering of partons. In certain mini-jet models, where
the impact parameter distribution is given by the Fourier
transform of the proton form factor, a model we refer to
as the form factor (FF) model [14], the following choice is
made:

n(b, s) =
ν2

96π
(νb)3 K3(νb)[σsoft + σjet]. (4.8)

The modified Bessel functions of the third kind Kµ(z) are
bounded by an exponential at large values of the argu-
ment, i.e.

Kµ(z) ∼
√

π
2z

e−z

{
1 + O

(
1
z

)}
.

We see then that while the FF formulation does (barely)
satisfy the requirements of analyticity in the Lehmann
ellipse, it lacks the observed shrinking of the diffraction
peak, corresponding to an energy dependent near Gaus-
sian fall off in b. Even if one were to introduce an ad hoc
energy dependence (as is often the practice) instead of the
constant scale parameter ν (as in the FF model), still one
would be nowhere near the stronger Gaussian decrease
at large impact parameters (i.e., for large b). This is one
reason why the FF model (and its simple variants), albeit
with jet cross-sections driving the rise of the cross-section,
fails to provide an adequate description of the over all en-
ergy dependence of the total cross-section, unless further
ad hoc modifications are introduced in its b dependence.

After this brief analysis of the virtues and deficiencies
of several models, we turn our attention to the central
result of this paper: an asymptotic sum rule which is es-
sentially model independent.

5 An asymptotic sum rule

In the eikonal picture, the dimensionless “b-wave cross-
sections” are given by [see (2.7)–(2.9)]

d2σel

d2b
= 1 − 2η(s, b) cos{2δR(s, b)} + η2(s, b),

(5.1a)
d2σinel

d2b
= 1 − η2(s, b), (5.1b)

and

d2σtot

d2b
= 2[(1 − η(s, b) cos{2δR(s, b)}]. (5.1c)

Equations (5.1c) show explicitly the maximum permissible
rise for the different cross-sections conceded by unitarity.
For complete absorption of “low” partial waves at asymp-
totic energies (which translates into η(s, b) → 0 for b → 0
and s → ∞), one obtains the geometric limit (including
the contribution from shadow scattering):

d2σel

d2b
=

d2σinel

d2b
(5.2)

=
1
2

d2σtot

d2b
→ 1 for b → 0 and s → ∞.

Evidence for such a maximum rise (i.e., the validity of
(5.2)) has been provided through various models, such
as the resummed soft gluon models [6,7,11,12] and other
models [8], all of which incorporate the observed rise in pp
and pp̄ total cross-sections. Our objective in the present
section is to provide global predictions through sum rules
over experimentally measurable quantities (such as dσ

dt ).
As we shall see later, the results of the sum rule are inti-
mately related to this maximum rise.

We shall first derive an inequality for the dimensionless
integral I0(s), defined as

I0(s) =
1
2

∫ 0

−∞
dt

√
dσ

πdt
, (5.3)
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Fig. 1. A plot of I0(s) versus
√

s using experimental data
[15–23]. The last point is our extrapolation for LHC

Using (2.1) and (2.5), it is easy to show that

I0(s) ≥ [1 − η(s, o)]. (5.4)

The above becomes an equality and in fact I0(s) equals 1
if we (initially) assume that at high energies
(i) the imaginary part of the scattering amplitude domi-
nates the real part and that
(ii) the imaginary part does not change sign. Our sum rule
thus reads

I0(s) =
1
2

∫ 0

−∞
dt

√
dσ

πdt
→ 1, for s → ∞. (5.5)

I0(s) should rise from its threshold value 2|a0|k → 0,
where a0 is the S-wave scattering length (complex for pp̄)
and k is the CM 3-momentum, to its asymptotic value 1 as
s goes to infinity. In Fig. 1 , we show a plot of this integral
for available data [15–23] on pp and pp̄ elastic scattering
for high energies2.

Highest energy data at
√

s = 1.8 TeV for pp̄ from the
Fermilab Tevatron give an encouraging value of 0.98 ±
0.03, demonstrating that indeed the integral is close to its
asymptotic value of 1. We expect it to be even closer to 1
at the LHC (our extrapolation gives the value 0.99 ± 0.03
for LHC).

Having found the trend to its asymptotic value at the
highest available energies, we may return to the question
whether the two assumptions made to obtain the sum rule
are really necessary. Presently, we know theoretically that
in the forward direction (t = 0), the imaginary part must
dominate the real part if the cross-section saturates the
Froissart–Martin bound. That is, if at high energies [25]
σtot(s) → Constant × ln2(s/s0), then

ρ(s, 0) =
ReF (s, 0)
ImF (s, 0)

→ π
ln(s/s0)

→ 0. (5.6)

2 Interesting new data on pp elastic scattering at
√

s =
200 GeV have recently been published [24]. However, these
data cover only the very forward region (|t| < 0.019 GeV2)
and hence are moot regarding our sum rule.

We can make a crude estimate of ρ(s, 0) through (5.6).
For the highest Tevatron energy, we find it to be about
0.2. Since the contribution of the real part to the integral
only enters as (1/2)ρ2, the neglect of the real part in the
forward direction would affect the integrand by about 2%,
i.e., well within the experimental errors which are about
3%.

If the total cross-section were to increase only as
ln(s/s0), the ratio of real to the imaginary part would
still go down to zero as in (5.6), albeit with a smaller con-
stant π/2. Thus, for rising cross-sections, we are assured
of the correctness of our first assumption in the forward
direction. For non-forward directions, we have no direct
evidence experimentally. However, since the overall differ-
ential cross-section would be decreasing (for t �= 0) as a
function of s, their contribution to I0(s) is less important.
It is for exactly the same reason that the second assump-
tion i.e., the absence of zeros in the imaginary part of the
non-forward amplitude is not really necessary. So long as
any possible such zeroes remain at some finite values of
(negative) t, they would not significantly upset the sum
rule. The satisfaction of our sum rule a posteriori justifies
this claim.

6 Discussion of results and conclusions

There are some interesting and significant consequences
which follow from the above analysis. First, since the
asymptotic value is reached from below, we may bound
η, the inelasticity in the central (b = 0) region. For exam-
ple, even at

√
s = 100 GeV, absorption is not complete but

only about 80%, giving us a quantitative understanding of
where the onset of “high energy” lies.

Another deduction concerning universality of the
above result may be made. That is, the central value of
inelasticity should approach zero for the scattering of all
hadrons (at least for all hadrons made of light quarks).
Such a result follows naturally from QCD if we recall that
both for nucleons as well as for mesons, half the hadronic
energy is carried by glue [26,27]. In QCD, such an equipar-
tition of energy has been derived rigorously to hold for all
hadrons which are bound states of massless quarks [28].
Since all available high energy elastic scattering data are
for nucleons and light mesons, all of which are made of the
very light quarks, we have excellent support from QCD for
equipartition. If one couples this with the notion that the
rise of the cross-section is through gluon–gluon scatter-
ing, which is flavor independent, the asymptotic equality
of (the rise in) all hadronic cross-sections and an eventual
flavor independence automatically emerges.

Of course, the approach to asymptotes would not be
the same for nucleon–nucleon and meson–nucleon scat-
terings. It is unfortunate that data for πN scattering
are available only up to

√
s = 20 GeV, which is far

from asymptotic. In fact, for this channel, I0(s) is only
about 0.6 at the highest energy measured so far. Since
the same asymptotic value of 1 for this integral should be
reached for all hadrons, the rise with energy must be even
more dramatic for meson–nucleon scattering. In principle,
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such a test for RHIC and LHC may be feasible through
Bjorken’s suggestion [29] of converting an incident proton
into a pion by isolating the one pion exchange contribution
via tagging or triggering on a leading neutron or ∆++.

It appears reasonable to extend our analysis to NA or
even AB elastic scatterings, where A, B are nuclei. Also
for these processes, at very high energies, we expect from
QCD that the central inelasticity should approach zero
and hence (modulo possible complications were ρ(s, t) to
be anomalously large), I0(s) should again asymptotically
go to 1. For illustrative purposes, let us consider the fol-
lowing very simple expression which incorporates the sum
rule:

|FAB(s, t)| = I0(s)BAB(s)e(1/2)BAB(s)t, (6.1)

Parametrizations of the above form (which underestimate
the large t contributions by ignoring the secondary slopes)
are routinely used. However, what is new here is that
since I0(s) goes to 1 in the asymptotic limit, the prefactor
would, in the same limit, become equal to the diffraction
width BAB(s). Physically, it says that unitarity correlates
and limits how large the amplitude can be, as a function
of the energy, to how fast it decreases, as a function of the
momentum transfer. If (6.1) holds, we may use the optical
theorem to obtain the approximate expression

I0(s) =
[

σtot(s)
4πBAB(s)

] [
1 + (1/2)ρ2

AB(s, 0)
]
. (6.2)

Under the same assumption, we would have

σel(s)
σtot(s)

≈
[
I0(s)

4

] [
1 + ρ2

AB(s, 0)
]
. (6.3)

For the highest Tevatron energy
√

s = 1.8 TeV, (6.3)
would estimate the elastic to total ratio to be about 0.25 in
excellent accord with the experimental value (0.25±0.02)
[30].

Future experiments from RHIC and LHC should be
able to test our sum rule predictions for pp and other
elastic channels. For this purpose, it would be useful that
in the future, experimentalists present values of I0(s) di-
rectly from their experimental data, obviating thereby in-
terpolations (such as those carried out by us to obtain
Fig. 1).
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